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Abstract

Complete Exchange requires each of N processors to send a unique
message to each of the remaining N - 1 processors. For a circuit
switched hypercube with N = 2d processors, the Direct and Standard
algorithms for Complete Exchange are optimal for very large and very
small message sizes, respectively. For intermediate sizes, a hybrid
Multiphase algorithm is better. This carries out Direct exchanges on
a set of subcubes whose dimensions are a partition of the intege- d.
The best such algorithm for a given message size 7n could hitherto
only be found by enumerating all partitions of d.

The Multiphase algorithm is analyzed assuming a high perfor-
mance communication network. It is proved that only algorithms cor-
responding to equipartitions of d (partitions in which the maximum
and minimum elements differ by at most 1) can possibly be optimal.
The run times of these algorithms plotted against m form a hull of
optimality. It is proved that, although there is an exponential nur her
of partitions, (1) the number of faces on this hall is O(v'T), (2) the
hull can be found in O(v/d) time, and (3) once it has been found, the
optimal algorithm for any given in can be found in O(log d) time.

These results provide a very fast technique for minimizing com-
munication overhead in many important applications, such as matrix
transpose, Fast Fourier transform and ADI.

*Research supported by the National Aeronautics and Space Administration under
NASA contracts NAS1-19480 and NAS1-18605 while the author was in residence at the
Institute for Computer Applications in Science & Engineering, Mail Stop 132C, NASA
Langley Research Center, Hampton, VA 23681-0001.



1 Introduction

On a distributed memory parallel computer, the complete exchange or all-
to-all personalized communication pattern requires each of N processors to
send a unique m-byte message to each of the remaining N - 1 processors.
This pattern arises in many important algorithms, such as matrix transpose,
vector-matrix multiply, Fast Fourier transforms, etc. It is also of importance

in its own right since it is the densest communication requirement that can
be imposed on all interconnection network. The time required to carry out
the complete exchange is, thus, a useful measure of the power of a parallel
computer system. Finally, in many applications that require a dense com-
munication pattern that is a subset of the complete exchange, it is usually
beneficial to use a highly tuned complete exchange routine rather than at-
tempting to write specific code for the required commnication.

On circuit switched hypercubes, such as the Intel iPSC-860 and the
nCUBE-2, there are two basic algorithms for obtaining the complete ex-
change. For a hypercube with N = 2d processors, the Standard exchange
algorithm attempts to minimize the impact of startup time of a message by
combining several messages into -ne 'super' message and using only d = log N
message transmissions[1 1]. After each transmission, a shuffle step serves to
route messages towards their correct destinations. This algorithm suffers

from substantial overhead of data permutation.
The Direct algorithm uses N-1 carefully scheduled 'direct' transmissions,

relying on knowledge of the routing algorithm used by the hardware to avoid
message contention[14, 16, 17]. This algorithm has no data permutation
overhead but suffers from N - 1 message startups. It is demonstrable that
the Standard exchange algorithm is best for very small message sizes, while
tlhe Direct algorithm requires minimum time for very large messages[3].

Multiphase complete exchange is a hybrid algorithm that combines the
features of the Standard exchange and Direct algorithms. It carries out the
complete exchange as a series of 'partial' exchanges on a set of subcubes[2,
4, 9, 10]. It permits a compromise between the message transmission and
permutation overhead of Standard exchange and the message startups of the
Direct algorithm.

The multiphase algorithm has been implemented and shown be useful on
the iPSC-2 and iPSC-860 hypercubes. For a given hypercube dimension d,
the number of possible multiphase algorithms equals the number of partitions



of the integer d. This is an exponential (though slowly growing) number
and hitherto the only way to find the best multiphase algorithm for a given
message size was to enumerate all. these partitions.

In this paper we carry out a detailed analysis of the hull of optimality
of all such multiphase algorithms. We make the assumption that the time
to transmit a message from one professor to another is independent of the
number of communication links traversed. This assumption is valid for most
high-performance circuit-switched machines.

Our analysis reveals that only algorithms corresponding to equipartitions
of d (partitions in which the largest and snialýe- elt+ ents differ by at itust
1) can ever be optimal. Furthermore, the number of potentially optimal
algorithms is always between 2v/- - 1 and 3v/d. We show that the hull of
optimality can be found in O(v-d) time. Once the hull has been obtained,
the optimal algorithm for a specific value of message size m can be found in
O(logd) time.

This result provides a very fast method of finding the optimal algorithm
fur a given message size and thus helps in reducing the communication over-
head in a variety of important parallel applications. The e(log d) time for
finding the optimal algorithm is so fast that it may well be feasible to choose
the algorithm during the course of program execution, based on the dimen-
sion of the hypercube and the size of the message currently being transmitted.

In Section 2 of this paper we discuss the complete exchange communica-
tion pattern and present the three algorithms. Section 3 contains our main

analysis in which we present our notation, properties of equipartitions, main
theorems, and obtain bounds on the number of faces on the hull. We con-
clude with a discussion of the ramifications of our results and suggestions for

future research directions.

2 The Complete Exchange

Complete Exchange requires each of N processors of a parallel machine to
send a different message to each of the remaining N - 1 processors. This
pattern arises, for example, when transposing a matrix of N x N blocks that
has been distributed over N processors, with one column per processor. The
transpose requires each processor to send a different block to each of the
remaining processors. The resulting communication pattern is equivalent to
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the complete directed graph of N nodes.
The matrix mapping described above is required when using the Alternat-

ing Directions Implicit (ADI) method for solving partial differential equations

[6, 13]. This method requires access to the matrix by rows and columns in
successive phases, necessitating heavy use of a transpose. Matrix-matrix and
matrix-vector multiplies have similar requirements. Complete exchanges are
also required in many implementations of the parallel FFT.

The complete exchange, being equivalent to the complete directed graph,
is the densest communication requirement that can be imposed on a network.
The time required by the complete exchange is an upper bound on the time
required by any other pattern and thus provides a useful measure of the
power of a distributed memory parallel system.

2.1 Standard Exchange

The Standard exchange algorithm was presented by Johnsson & Ho[1 1] and
uses log N transmissions of size N/2 blocks each. All communications are

over single links, therefore no attention needs to be paid to the routing al-
gorithm (in effect, the algorithm does the routing itself). The overheads in
this algorithm are due to shuffling and the long message sizes that need to
be transmitted. Despite this, the algorithm is competitive for small block
sizes, since the total number of messages it transmits is log N as opposed to
N - 1 for the Direct algorithm.

procedure Standard-Exchange;
begin

forj =d-1 downto0do
begin DI .7 . 2" .7:. '-i2D 5

if (bit j of mynumber = 0) then
message = blocks n/2 to n - 1

else

message = blocks 0 to n/2 - 1; A.0OSsion Par

send -message-to-processor ((mynumber) E) (2J)) 117C 0a, _9

shuffle blocks; wiiannounced 0
end;en;•

By

.Dj~rtributiOP .. ,
I AvailabilitY Qoes

Dist. specill



2.2 Direct Algorithm

The Direct algorithm was first reported (in Japanese) by Take [17] and later
by Seidel et al.[14, 161. In this algorithm each processor sends out N - 1
messages, one to each of the remaining processors. The issue is to schedule
the transmissions such that no edge contention takes place. Assuming the
almost universal 'e-cube' routing algorithm, the exclusive-OR schedule de-
scribed below achieves content ion-free transmission. This algorithm always
outperforms Standard Exchange for large message sizes.

procedure Direct;
begin

fori 1 to n -1 1do
seind-block-to-processor( (myn urn ber) (T (i));

end;

2.3 Multiphase Complete Exchange

The multiphase algorithm combines the Standard exchange and the Direct
algorithms into one unified algorithm. It carries out the complete exchange
as a sequence of two or more 'partial' exchanges. This algorithm has been
implemented on the iPSC-2 and iPSC-860 [2, 4, 9, 10]. A complete exchange
on a hypercube of dimension d with n = 2d processors and block size in is
done using a set of partial exchanges V {dl, d2, --- , dk}, on k subcubes,
where each di specifies the dimension of the kth. subcube. Obviously IE1 = k,
1 < k, and E'-1 di = d. Each partial exchange is called a phase.

The Jth partial exchange is done on the set of subcubes determined by bits
= - dj to v' =di of the hypercube node labels. In the partial exchange

for the ith phase, 2 d-d, blocks of 7n bytes each are transmitted, to each of
2 - 1 processors. The cffcctivr block size is thus m2'1-d,.

procedure Multiphase;
{ d: dimension of the hypercube

71: numl)er of phases (subccubes) in partition E
di: dimension of the ith su l)culbe in partition V
.start:starting bit of subc'ulhc label
"4top: ending bit of subcube label }



begin
start = d- 1;
fori= 1 tondo

{ Partial exchange}
begin

stop = start - di + 1;
compute effective blocksize;

for j = 1 to ( 2 start-stop+1 - 1) do
send -effective-blockito-processor((mynumber) D (j2stoP));

shuffle blocks di times;

start = stop - 1;
end;

end;

In the above algorithm, when k = d, all dis are 1. In this case the outer I
loop is executed k times with start = stop = d - 1, d - 2,. • •, 1, 0. The inner
j loop is executed only once for each i. In this case Multiphase degenerates
into Standard exchange. When k = I and therefore d] = d, the outer loop is
executed only once. stop always equals 0 and, in the inner loop, j takes on
the values 1,2,...,2d - 1 and thus Multiphase becomes Direct.

In our analysis, we have assumed that the complete exchange corresponds
exactly to a transpose. Thus not only do blocks have to be transmitted among

processors but each block needs to be placed in memory in the destination
processor in its 'correct' transposed position. This accounts for the shuffle
at the end of the last partial exchange. When there is only one phase, i.e.
the algorithm corresponds to Direct exchange, the last set of d shuffles is
equivalent to the identity permutation and is redundant. In the interest of
simplicity, this has not been excluded from our analysis.

2.4 Implementation

A detailed evaluation of the performance of the Standard Exchange and Di-
rect algorithms appears in [3]. The multiphase algorithm has been evaluated
in [2, 4], wherein it has been shown that this approach can improve perfor-
mance by as much as a factor of 2.
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3 Analysis of the Multiphase Algorithm

The performance parameters characterizing a typical hypercul)e architecture

are given in Table 1. r is the time to traii,,nit one byte while p the time to

move a byte from one memory location to another, on the same processor.

A is the startup time, the time that elapses from issuance of a transmit

request to initiation of transmission of the first byte. 6 is the distance impact,
that is the time required for a message to travel across the communication
network of the processor. We assume this to be independent of the number
of communication links traversed.

We omit the overhead of processor synchronization from our analysis.
Each phase of our algorithm takes a precise amount of time. If all processors
keep their clocks synchronized, there is no need for a global synchronization
operation between phases, as the time to start a new phase can be com-
puted by each processor independently. The issue of clock synchronization
on hypercubes is discussed in [7].

Table 1: Performance parameters of a hypercube

IJ Description Units
T transmission time per byte
p data permutation time per byte
A startup (latency) time per message
6 distance impact time per message

The time taken for a message of size in bytes is rm + A + 6. The Standard
Exchange algorithm requires d transmissions of m2d- 1 bytes each, and d
shuffles on 2 d blocks of in bytes. This leads to

tstandard = d(in2d-1 + A + b) + dp2dm

d[(2 + p)2 (A + 6)]

The Direct algorithm needs 2 ' - I transmissions of 7n bytes each, giving
us

t direct : ( 2 d - 1) [7in + (A + 6)].
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A Multiphase algorithm, with n phases of size d, each, requires for the ith
phase 2 d, - 1 transmissions of mnl2 d -d bytes each, followed by a permutation
of 2 d bytes. Thus

td,d, = (2 d.- 1)(A + rm2d-d + ) + pm2d

- {l~ )- +p} 2 d~n +( 2 d' -l)(A + ). (1)
2d,

Since E,= di = d, the total time required by the Multiphase algorithm is

7L

t
multiphase td,d

i=i

Z{(1 - ±+ p} 2 in + (2 - 1)(A + b). (2)
i=1

3.1 Finding the best Multiphase algorithm

In our presentation of the multiphase algorithm, we have not stated which
of the many possible partitions of the integer d is best in terms of total time.
The total number of partitions of the integer d is approximated by: [1, 8]

p(d) ,,4~

which is a slowly growing exponential, with p(20) = 627. It is feasible, though
neither efficient nor elegant. to enumerate all partitions of d to find the best
algorithm using the expression for t,,ultiphiase (2). Furthermore, t

inultiphae Is

not convex for n = 2. It is therefore not possible to find the best partition
by recursively halving d.

The objective of this paper is to carry out a detailed investigation of the
multiphase algorithm. We shall be concerned with the hull of optirnal;tv
formed by the straight lines that describe the run times of all possible multi-
phase algorithms on a hypercube of dimension d plotted against the message
size in. We shall show that a large class of algorithms can never be optimal.

Of the remaining algorithms, a large fraction are optimal only at vertices of
the hull of optimality and can be ignored. These results permit us to obtain
a bound of O(v/d) on the number of optimal algorithms.
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3.2 Notation

Let [... a1 ][n•, a2 ][u:3, (L•] lenote thie sequence ,made up of III .a'S' folhIowi
by ,12 (12'S, etc. Thus [3, 2][4, :1][2, 5] denotes thle sequence {22233:3:551.} Th,
elements of a sequence shall always be enumerated in lion -•ecreasi ng ordt.r.

Let the calligraphic letter Ad,,, denote an arbitrary partition of the it•,eger
d with cardinality n. The elements of this partition are denoted by the,
lowercase letters ai. We shall omit subscripts when they are irrelevant to
the discussion. Example: two of many possible car(linality 6 partitions of
the integer 30 art {224679} and {115788}. Table 2 shows the partitions of
d = 5. Define an rquipartition of the integer d to be a partition it which

Table 2: Partitions of the integer 5.
5

1 4
2 3

1 1 3
1 2 2

1 1 1 2

the largest and smallest elements differ by at most 1. An equipartition of d
with cardinality it is denoted Ed,,. By definition, Ed,, == d. In Table 2 the
cardinality 3 equipartition is {122).

It is straightforward to verify that

dn = In - d mod n, [ J] [d mod n, rd]]

For example E19,8 {22222333} = [5, 2][3, 3]. Since the cardinality n equipar-
tition of an integer d is unique, there are d unique equipartitions of the integer
d.

The time taken by a set of partial exchanges corresponding to a partition
of the integer e < d, Me,,l M { , in 2 ,-, i,) on a dimension d hypercube
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is

71

tdM. E = Z t,, . (4)
t=1

In the case e < d, AlM,,, is not a partition of d and the resultant data move-
ment is not a complete exchange. Nevertheless this definition is important
for subsequent analysis. When e = d, , is a partition of d, and the set of
partial exchanges corresponding to Al,,, constitutes a inultiphase algorithm
for complete exchange, as described above. We shall use the terms 'algo-
rithm' and 'partition' interchangeably, so that when we say 'time required
by a partition', we mean the 'time required by a set of partial exchanges
corresponding to that partition'.

Of particular interest to the ensuing discussion is the time required by an
equipartition, which is obtained by combining (3) and (4):

tdd,, = (n - d mod n)td, jJ + (d mod n)tdrfl (5)

For a partition A,,, {=a,a.2, ., a,}, we have

i=t

[(1 - 2-",)r + p] 2dm + (2 " - 1)(A + 6)+

I - 2- 2 )-r + p] 2"m + (2-2 - 1)(A + b) +

1(l - 2-n )7 + p] 2d7 l, + (2 I - I )(A + 6)

[(n - 2- .... 2 -- n )r + np, 2 d 7 1 +

(2a1 + 2` +... +2a,)(A +b)

This prompts us to define, for the partition Aa.,

" = + '2" +-+ 2a"

and
. .... = 2-11 + 2-a + + 2 "

which then leads to tlhe compact expression

tdA, [(n - - )T + 2ip 2 "m + ( 2 A0 , - n)(A + h). (6)
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Since every eleiient of A is at least I - th ie coeffiIei it of mi ini t lie above

expressioi is > 0 as is the coefficieint of (,A + b). Thus when t4,A is plott'(l

against in we obtainn a line wit h po sitive slope and intercept.

For an equipartition we have

- (- 2 )r + ,,p] 2',n + (2f --,)(A+,). (7)

3.3 Properties of Equipartitions

Several properties of 2r . and 2-," shall be useful in the ensuing discussiOin

and are presented in this Section. In understanding these properties, it is
useful to refer to Table 3 which lists Ar,,,, 2 "A, - and 2 -A,°, for all partitions of
c 7. The last colunmi of this table indicates if an entry is an equipartition.

Table 3: Partitions of the integer c 7.
n 2"A,,. 2-'A-," At,,

T 128 0.007812 7 E7,1

2 66 0.515625 1 6
2 36 0.281250 2 5
2 24 0.187500 3 4 E7,2
3 36 1.031250 1 1 5
3 22 0.812500 1 2 4

3 18 0.750000 1 3 3
3 16 0.625000 2 2 3 E7,3

4 22 1.562500 1 1 1 4
4 16 1.375000 1 1 2 3
4 14 1.250000 1 2 2 2 E7,4

5 16 2.125000 1 1 1 1 3
5 14 2.000000 1 1 1 2 2 E7,5

6 14 2.750000 1 1 1 1 1 2 F7,6

7 14 3.500000 1 1 1 1 1 1 1 S7,7

The first three properties arise from the theory of Schur-convexity[12]
which we summarize as follows.
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1. Given X, Y E IR", with ZL= £2 = xi y,. Let x(i], y[:] be the ith largest
component of X, Y, respectively.

j j
We say X -< Y if Zx[] = y[N] for all j = 1,2,.. n.

i=1 i=1

2. ) : IR'2 -- IR is called Schur-convex if, whenever X -< Y, then $(X) <
41(Y).-

3. If g : IR - IR is convex then D(X) = , g(xi) is Schur-convex. Exam-
ples of such functions are g,(x) = 2x,9 2(x) = 1/2".

Property 1 For any 1 < n < e

(a) 2E-0 < 2Ao,-

(b) 2-' = 2-6oe < 2 -Aen < n

Property 2

(a) 2-ed,2 < 2 -Ad,2

(b) 2 "d,2 < 2 Ad,2.

Property 3 2-r,- < 2 C.en.l.

Property 4 2-6e- - 2 -1en..1 < 3/4.

Proof. -64,n-l can always be obtained by deleting the smallest element of
4,, and distributing it over the remaining elements of -F,,,. Suppose

E,, = {e,,ee2,. ,en}

and that for some k < n,

el = e1,j + e1,2 + "'" + Cl,k

all of which are greater than zero. Then

2 -16... 2 -Ce.n.. =

2-e"1 1 -e1,2 .- ek +

2-e2(1 - 2-e,. ) + 2-e3(1 - 2-e1,2) + ... 2-ek+1 (I - 2-e1.k) +

2-ek+2 + + 2 -en.
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This is a positive quantity that achieves a maxinmum when k - 1 and 1 1,
in which case it is

2-1 + 2-'(1 - 2-') =3/4.

We have mentioned earlier that the time for a partition, when plotted
against in, leads to a line with positive slope and intercept. The lines corre-
sponding to the run times of equipartitions are of critical importance in this
discussion.

Property 5 Consider the straight lines corresponding to the two equiparti-
tions E,,, and 4,,,-1, plotted against tn. Then
(1) td,&,, has greater slope than te ... and
(2) td,,,, has smaller intercept than t 4 .

Proof. We have from (7)

[(n - 2-Ct-)r + np] 2dm + (2E- - n)((A + b)

[dC~ (n -I ~2 Ce~n-I) 7 - + (n - 1)pJ 2 dm ±n (2CEýI-- n + 1)(A + b)

slope(t&,.) - slope(te,,_,1 ) = 2-10e.n.. - 2-En + 1

> 0 by Property 4

intercept(te,,) - intercept(trE... ) = 2e.n 2- 2t-. - 1

< 0 by Property 3

0

The times taken by equipartitions thus form a hull in which the leftmost
face corresponds to a partition with maximum cardinality, while the right-
most face corresponds to a partition of minimum cardinality. Faces of de-
creasing cardinality lie between these extreme faces. Figure 1(a) shows plots
of the run times of all partitions (not necessarily equipartitions) of d = 4
on a hypercube of dimension 4. We can see that the hull of optimality is
formed by equipartitions { 1111 },{22} and {4}. The non-equipartition {13}
does not touch the hull. The equipartition {112} touches the hull but does
not contribute a face (it passes through the point of intersection of { 1111 }
and {22}). Figure l(b) shows the times for all partitions of d = 6 on a hy-
percube of dimension 6. In this case the hull is formed by the equipartitions
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d=4 d=6
4.0 1112J 25

3.5- 1151
3.020 -

11 !13J
.1 2.5 - 124f-15-
S 2.0 6
S115 122t 10

1.5 S. 133J

E- 1.0

5
0.5 12221

0.0 I ' 0
0 15 30 0 20 40 60

Message Size (bytes) Message Size (bytes)

(a) (b)

Figure 1: Run times for d = 4,6. In this particular example, A = 100,6 =

10 (psec.) and r = 2 ,p = 1 (psec./byte). Circle indicates the point of

intersection of all partitions of cardinality 2:{33},{24} and {15}

{1I1111}, {222}, {33} and {6}. Only a few of the remaining partitions are
labeled to avoid a congested plot, but we can see that out of the 11 partitions
of the integer 6, only the abovementioned 4 equipartitions contribute a face
to the hull.

We now prove Properties 6 and 7 which are also illustrated in Figure 1.

Property 6 For any d,

(a) Sjd,I always lies on the hull, and

(b) $E',d always lies on the hull.
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Proof. Ad,,. represents an arbitrary partition of cardinality n. From (6) and
(7) we have

td,Ad., = (n - 2Ad• )r + rip 2 d771 + (2 An - n)(A + 6)

t d,Ed, 1 [(1 - 26d,. ).r - p] 2 dm + (2 fd I - 1)(A + 6)

tdedd= [(d - 2d.d)r - dp] 2dm + (2 dd - d)(A + 6)

(a) The expression

td,Ad,n - td,-d,l

= (n-1 '-Ad,n ±2dI)-(n-1)]+(Ad,.- 2ed,1 - n + 1)(A + 6)_- [(n - l _- 2 - +,_t 2 - ,) • (n -- 1)pl] + (2.,, -2 , - n l ( -- )

> [(n +2 -d-- 1),r + (n -- 1)] 2dm + (2 Adn" -- 2-"- n+1)A+b> -+ 1)(A +6()

(by Property 1(b))

which is always positive for sufficiently large m and n > 1 (for n = 1, Ad,,, -

£d,1 and the property hold vacuously). Thus 9d,1 lies below any Ad,,n for
sufficiently large m.
(b) At m = 0, the expression

td,Adn, - td,ed,d = (2"Ad'n - 2'd'd - n + d)(A + 6)

is greater than zero, since 2"Ad,n > 2 '',d (by Property 1(a)), and d > n). Thus,
Ed,d lies below Ad,n for m = 0. U

The partition Ed,1 corresponds to the Direct algorithm, while Ed,d is equiv-
alent to the Standard exchange. These two algorithms are extreme cases of
the Multiphase algorithm. Property 6 tells us that the Direct algorithm is
always optimal for large values of m, while Standard exchange is always best
for very small values.

Property 7 Of all partitions of cardinality 2, only Ed,2 can lie on the hull.

Proof. Consider the two partitions £d,2 = {e, d -- e} and Ad,2 = {a, d - a}.
We have

td,d,,2 = [(2 - 2Ed,2)r + 2p] 2dm + (2d.2)(A + 6)

td,.d,2 = [(2 - 2Ad2)r + 2p] 2dm + (2"d2)(A + 6)

14



Solving for t,,d 2  
t d,Ad.2 We obtain

(2Ad,2 - 2-rd.2)(A + 6)
(2 -. ,.•- 2-Cd,2 )r2d

(2Ad,2 - 2fd,2)(A + 6)
(2-a + 2 -d+a - 2-e - 2-d+e)T2d

(2 Ad2 -216d.2 )(A + 6)
( 2 d-a + 2- - 2 d-e - 2e)r

( d2- 2ed,2)(A + 6)

(2Ad,2 - 2ed,2 )r

which is independent of Ed, 2 and Ad,2. Thus all partitions of cardinality 2
intersect at a point.

Since 2 -fd,2 < 2-Ad,2 and 2ed,2 < 2Ad,2 (by Property 2), t1 ',, has greater
slope and lesser intercept than tAd,2. Therefore only tcd,2 can lie on the hull
for m < (A + b)/r.

At m = (A + 6)/r we have

td,C,42 - td,CdI

= [(1 - 2-Cd,2 + 2-6d,I )r + p] 2 d(A + 6) + (2rd2 - 2ed,' - 1)(A + 6)
T

= [(1 - 2' - 2 -d- + 2-d)2d + (2' + 2ld- - 2 - 1)+ p2d/lr] (A + 6)
,r9d (A + 6)

which is always positive. This means that the line t'd,, always passes below
the common point of intersection of all cardinality 2 partitions. We have
already shown that of all cardinality 2 partitions, only Ed,2 can lie on the hull
below this point. Hence of all cardinality 2 partitions only Ed,2 can lie on the
hull. 0

In the following, we shall prove that a non-equipartition cannot contribute
a face to the hull of optimality and further that a large number of equipar-
titions can at most touch the hull at a vertex. Therefore, although there is
an exponential number of partitions of an integer d, we shall prove that the
number of faces on the hull of optimality is O(vQ).
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3.4 Main Theorems

The properties proved above permit us to determine the maximum number
of faces on the hull of optimality. Table 4 lists all partitions of the integers
1...7.

Table 4: Partitions of the integers 1 ... 7.

Ad,.

7 6 5 4 3 21
7. 6 5 4 3

6 1 5 1 4 1 3 1j2 1_ _
25 24 23 221111
3 4 3 3 1 1 3 1 1 2
1 15 1 14 1 22 1 11 1

1 24 123 1112
113 3 2 22 11 11 1

2 23 1 1 1 3

1 1 4 1 1 22
1 1 2 3 11 11 2

2221f11111 1 1 13

I 1 12
S1 1 1 122

I1 1 1 12

Turning our attention to the partitions of 7, we see that if we select all
those partitions that have a '1' in them (these are boxed in the table) and
then delete a '1' from each of these, we obtain the partitions of 6, which
are given in the next column. Similarly, selecting all partitions of 7 that
have a '2' in them and then deleting a '2' from each of these will result in
the partitions of the integer 5 and so on. It is thus clear that the set of all
partitions of the integer d is composed of the union of the sets ,• all paritions
of the integers d - a, 1 < a < d, each augmerted by a and the integer d. For
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a specific partition we have

AkL=Ak-a,m + {(l}

where we take the '+' operation to tiean the addition of an element to a
partition. The following property is evident.

Property 8 td,Akr = ti,Ak ... + td,{-}.

It follows that the straight lines describing the run times of all partitions of
an integer d can be obtained by adding td,{a} to the run times of all partitions
of the integer d - a, and then adding the line ttdl. This permits us to prove
the following Theorem.

Theorem 1 A non-cquipartition cannot touch the hull of optirmality.

Proof. By induction on the partitions of integers < d.
Basis step: The smallest integer that has a non-equipartition is 4, which
has only one: { 13}. As the basis step of our induction, we shall prove that
td,ý13) can never touch the bull.

The equations for the 5 partitions of 4 are, from (1),

( 15, -
td,{4} = 15A + 15o 7+2dm 1P+ --5 -

td,{13) = 8A+8cr+2dm (2p+ I_-•r)

td,{22} = 6A+6a+2dm (2p±+•T)

td,{122} = 5A +5oa+2dm (3 p±+ -7-)

td,{1111} = 4A+4a +2dm (4p+2r)

The point of intersection of t d,{4} and td,{22} is

144 (A + a)

2 d (16p + 9r)

At this value of 7n we have

-32 p (A +a)t d,{4} -- 
t d,{13} 16p+

16p+9r

17



which is always negative.
The lines td,{22}, td,{122} and td,{1111} intersect at a single point which

occurs at
4 (A + o)

2d (4 p + r)"

At this value of m we have

- -((A+o) (16 p+ 3 r))
td,{a11- - td,{13} = 2 (4p + r)

which is also always negative. Thus the partition {13} can never touch the
hull of optimality.
Induction: Suppose the theorem is true for all partitions of the integer
k < d. Partitions of the integer k + 1 can be obtained by adding 1,2,..., k
to the partitions of the integers k, k - 1,... , 1, and then adding k,j = k
as discussed above. The corresponding run times are obtained by adding
td,1, td,2, '', tdk to run times of all the constituent partitions, as stated in
Property 8. Each time we add t d,, to all the partitions of a certain integer
we raise the hull of optimality and all other lines by a linear amount. The
resultant hull of optimality of cardinality k + 1 will be the intersection of the
hulls of cardinality 1,2,. • •, k. A line that did not touch one of the constituent
hulls cannot touch the intersected hull.

When a partition is augmented, a new non-equipartition of cardinality k
can be created by augmenting (1) a non-equipartition of cardinality j or (2)
an equipartition of cardinality j. In the first case our hypothesis continues
to hold since a non-equipartition not touching the hull is transformed into
an non-equipartition that still does not touch the hull.

The second case requires careful analysis. When an existing equipartition
of cardinality J, d8j, that by hypothesis must touch the hull, is transformed
into a non-equipartition Sd,j + {k - j} we have two possibilities

k > 3 Consider the partition obtained by deleting one of the original ele-
ments, 7n E £d,j from £d,j + {k - j}. This new partition must be a
non-equipartition of cardinality d - m. In the hull for d - m it could
not have touched the hull, being 'masked' by equipartitions of cardi-
nality d - m, and therefore it can now also not touch the hull after
augmentation.
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k=: 2 In this case Property 7 states that only the equipartition of cardinalitv
2 cat lie on the hull.

Therefore no non-equipartition can touch the new augmented hull of op-
timialitv for k + 1. We have proved that if the theorem is true for k is is also
true for k + 1. We have already shown that it is true for k = 2, 3, 4. Thus it
is true for all k. a

An important consequence of Theorem 1 is the fact that even though
there is an exponential number of partitions of d, the total number of faces
on the hull of optimality cannot exceed d, the number of equipartitions. We
shall continue with further investigations into the properties of equipartitioi:s.
These will permit us to improve the bound on the number of faces to O(vQ).
At this point we prove a theorem that sLall permit us to place a lower bound
on the number of faces on the hull.

Theorem 2 Every equipartition must touch the hull of optimality.

Proof. By induction on d.
Basis step: The theorem is true for d = 2, since by Property 6, both { 11 }
and {2} must lie on the hull.
Induction: Assume the theorem is true for d = n. Then the hull of optimal-
ity is touched by all equipartitions £,,,j, 1 < Z < n. The set of equipartitions
of the integer n + 1, that is £,,+1,i, can be formed from the set of equiparti-
tions of the integer n, by adding 1 to the smallest element of each £,, and
then adding the new equipartition £,n+1,n+1.

Turning to the corresponding run times, this operation is equivalent to
adding

1 (
td,{1} 7i- + p)2 dm + (A + b)

to each of te.,,, 1 < i < n (see equation (1)). Since the same linear expression
is added to each trn,, the relationships between these lines is undisturbed and
the augmented hull is touched by all of the augmented equipartitions. Now
consider te,,+,,,; this must touch the hull because of Property 6(b). Thus
the hull of optimality of the integer n + 1 is touched by all equipartitions of
n+l.

We have proved the theorem to be true for d = 3. We have shown that if
it is true for d = n it is also true for d = n + 1. It is therefore true for all d. n
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An equipartition £d,, can only have two distinct elements: Ld/nj and
[d/n1. In some cases sequences of several different equipartitions have the
same two distinct elements. For example, in Table 4, E6,6 = [6, 1], E6,s =
[5, 1][1,2], E6,4 = [2, 11[2,21 and £6,3 = [3,2]. All these partitions are com-
posed of l's and 2's exclusively. Similarly, the following equipartitions of the
integer 19,

£19,7 = {2233333}
E19,8 = {22222333}

E19,9 = {222222223}

are all composed of 2's and 3's exclusively. We call such equipartitions indis-
tinct. It is clear that indistinct partitions always have successive cardinality
values.

Theorem 3 The run time functions of indistinct equipartitions are linearly
dependent.

Proof. Consider three indistinct equipartitions of cardinality p, p + 1 and
p - 1 that are composed of the elements Q and Q + 1. Then for some a,/3, 7

Ed,, = [a, 1] [p-a, Q+ 1]
£dp+I = [/3, QI] [p+1/3, Q+l]

-d_ = [_Y fI]Q [P -l- I I1

The times for these equipartitions are

teap = atd,Q + (p - a)td,Q+l (8)
t"a,+, = !tdJ1 + (p + 1 - /3)td,+l (9)

ted,,,Pl = 7tdO + (p - 1 - -t)td,Q+l (10)

Since we are dealing with equipartitions of the integer d,

d= af + (p - a)(Q + 1)

= /3f+ (p + -/3)(fl +)
=t 7F+ (p- - 7Y)(Qt + 1)

These yield the following relations

/3 = l+a+f (11)

- 1= -1+ -Q (12)
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Substituting (11) and (12) in (9) and (10) we obtain the system

t""d at= ct-, + (p- OI)td,Q+l (13)

tep+ = (1 + 0 + Q)td,± + (p+ -Q)td,.+I (14)

(--I + • -+ !)tdQ + (p - c + Q)tdýQ+ (15)

Adding (14) and (15) we obtain

tEd,p+1 + teid',,_ 
2 atdn + 2(p - a)tjQ+I

= 2ttdP

Hence the system is linearly dependent. a
Theorem 3 assures us that all members of a set of indistinct equipartitions

intersect at a single point. Therefore only two of these can contribute faces
to the hull of optimality, since they have successively decreasing slopes and
increasing intercepts (Property 5). For example, in the hull for d = 4 (Figure
1), we can see that the equipartitions { 1111 }, { 1121 and {22} intersect at a
point and only { 1111 } and {22} contribute faces to the hull.

3.5 Faces on the Hull

From the foregoing discussion we can set that all equipartitions touch the
hull. Each distinct equipartition contributes a single face to the hull while
each set of indistinct equipartitions contributes two faces. To find a bound
on the number of faces on the hull, refer to Figure 2 which plots [d/nJ,
and [d1n] versus n for d = 11 and 16. In each of these plots, the dashed
curve rep)resents the the continuous function d/n. The values of [d/nJ7, and
[d/n] are indicated by heavy (lots. When [d/nj < [d/n], there is a vertical
line joining these dots. In the plot for d = 11 we have enumerated all the
equipartitions in full, while in the plot for d = 16 we have used the compact
notation (3). The lines marked with '+'s are tangents, with slope -1, at the
point Lv/-J, LvQIJ-

Over the range I < • _< \/-d the slope of these hyperbolas is less than
- I and therefore no two consecutive equit)artitions can have an element in
co011mon. All e(inipartitions in this range are distinct and their nuumber is
('(uial to the number of integers in this range, which is LvQJi. This equals Ihe
number of '+'s on t he tangent between U = I andi n = [0/
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Figure 2: Plots of [d/nJ, Fd/nl for d = l1 and 16.

Indistinct equipartitions can only occur over the range d < n < d.
The number sets of in distinct equipartitions is no more than the number of
distinct values of [d/nj, which is the number of '+'s on the tangent between
v/d and d, and is again [Van.

In the range 1 < n < vxd, there are no indistinct equipartitions, so one
face -s contributed to the hull by each equipartition, giving us a total of [vlJ
faces. In the range V/d < n < d there may be up to LvldJ sets of indistinct
equipartitions, each contributing at most 2 faces and at least one face to the
hull. An upper bound on the total number of faces on the hull is therefore
3 [v'-J. To obtain a lower bound note that the hyperbola is symmetric about
the line n = d/n (the line through the origin with slope 1). If the point
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LvdJ, [v"TJ lies on, this line the number of distinct levels is 22[v'dj - I and
is 2[v'dJ otherwise. Each level must contribute at least one face to the hull.
Thus the lower bound on the number of faces is 2[V'\J - 1.

The equipartitions that contribute to the hull canl be found by visiting
all O(v'd) points on the tangent. For I < n < Lv'IdJ, each point corresponds
to the eqilipartitio,, &,j,,. For each n in the range [v'd .. 2 [\dJ there is a

sequecel of indtistinc't eCi(pi partitions extendhing from [d/( n + 1)] to [d/,J.

We need consider only the first and last members of these sequences. Thus
all partitiomls contributing to tile hull can be found in 0(-)v"1 ) time. Once

these partitions have been found. the vertices of the hull ('all be discovered
by computing the intersection points of adjacent partitions, again i i O(v/d)
time. The intersection points will be computed in order and, once they have
been stored, the optimal algorithm for any value of in call be found using a
binarv search in O(logd) time.

4 Conclusions

We have analyzed the multiphase complete exchange algorithm and shown
that the total number of optimal algorithms lies between 2v1d - 1 and 3v•/d.
This holds under the assumption that the time for transmitting a message is
independent of the number of communication links traversed. High perfor-
mance parallel machines satisfy this assumption.

In addition to its theoretical interest, this result is of considerable prac-
tical importance. It allows us to compute the optimal algorithm for any
given values of hypercube performance parameters and message length very
quickly. When dealing with an application where the performance parame-
ters (Table I) are fixed and the message lengths for complete exchange vary
from time to time, the values of message length mn at which vertices of the
hull of optimality occur can be compluted ahead of time and stored in a sorted
list. During the course of program execution, a fast binary search will locate
the optimal algorithm for the current message size.

When the performance parameters vary with time, as would happen if
the communication network were shared among several subcubes, our results
provide a fast method for computing the optimal algorithm from scratch.
A related situation is where the same application is run on hypercubes of
different sizes.
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Among the future directions of this research, the foremost issue is an ex-
tension to 2 and 3 dimensional meshes. Preliminary results on 2-dimensional
meshes appear in [5]. Since the time required for 'direct' complete exchanges
on N-processor 2 and 3-d meshes is O(Na/2 ) and 0(N 4 /3 ) respectively[15],
compared to the hypercube's O(N), any improvements will be especially
welcome.
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